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Abstract

In this article, monist values are expressed as preferences like in economics
and decision making. On the basis of this formalization, various ways of
defining value disagreement of agents within a group are investigated. Twelve
notions of categorical value disagreement are laid out. Since these are too
coarse-grained for many purposes, known distance-based approaches like
Kendall’s Tau and Spearman’s footrule are generalized from linear orders to
preorders and position-sensitive variants are developed. The account is further
generalized to allow for agents with incomplete information. The article ends
with a discussion of known limitations of preference-based accounts of values
and how these might be overcome by accounting for parity and essential
incompleteness. It is also shown that one intuitively compelling notion of
disagreement does not give rise to a proper distance measure.

Keywords: agreement, preferences, values, strategic rationality, distance mea-
sures

1 Introduction

In this article, we lay out a theory of value disagreement between rational agents
based on existing work on distance measures between preference relations. In-
vestigating value disagreement in an ideally rational setting is worthwhile for a
number of reasons. First, there is a growing body of publications in formal ethics,
and classifying different types of categorical and graded value disagreement can
be understood as a general contribution to the field of axiology.1 Second, different
types of value disagreement might be integrated with existing models of graded
and categorical belief and knowledge in formal epistemology and the study of
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multi-agent systems in computer science, for instance in order to explain strategic
interactions between agents on the basis of mutual assessments of their ‘value
systems’ rather than only of their epistemic states.2 Third, philosophers of language
have recently demonstrated a growing interest in the semantics and pragmatics of
evaluative language use and the different notions of disagreement that arise from it.3

Our hope is that the various types of value disagreement that will be presented in this
article will turn out to be useful for clarifying this debate. Finally, there is existing
work on preference-based consensus measures in Social Choice on which Section
3 of this article is based.4 To this existing body of work on distance measures
this article makes a number of small contributions: The measures are related to
categorical disagreement via truth tables, it is proved that narrow disagreement does
not lead to a distance measure, a new way of averaging to deal with preorders is
introduced, and it is shown that position-sensitive measures lead to an interesting
concept of perspectival disagreement, although they are themselves not proper
distance measures.

The starting point of the investigation is a single-preference representation, as it
is commonly used in social choice for the representation of a voter’s preferences.
A single value, like a specific reading of ‘good’, is formalized on the basis of its
comparative ‘better than’ by a preference relation. For each agent x P G, a preorder
relation ľx is defined over a domain A of alternatives. A preorder is reflexive
and transitive, i.e., aRa, and from aRb and bRc it follows that aRc (for any al-
ternatives a, b, c). Since only one relation per value used, the value in question is
monist, but the account can be taken as a basis for more complex value represen-
tations and therefore serves as a good starting point for an investigation of value
disagreement. On the basis of this representation, in Section 2 pairwise agreement
and disagreement, as well as twelve categorical notions of disagreement between
preference relations are laid out, which have not been investigated systematically in
the literature so far. The tables of this section will be used for graded accounts in
Section 3 and later provide a convenient means in Section 4 to adopt measures for
cases with parity and incompleteness. Section 3 is devoted to approaches based on
distance measures. We first lay out two existing measures, Spearman’s footrule and
the inversion number, and show how these can be derived from various notions of
categorical value disagreement. An interesting negative result is that what we call
narrow disagreement, the counterpart to loose disagreement, does not give rise to a
proper distance measure despite its intuitive appeal in certain scenarios when choice
is involved. We then lay out position-sensitive variants of these measures in Section
3.3 which are not symmetric, hence no distance measures either, but allow one
to define a philosophically interesting observer-dependent notion of disagreement.
Finally, in Section 4 the approach is situated within the broader field of axiology by
addressing possible critiques and modifications to deal with incomplete information,
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value incommensurability, parity, and plural values. A brief summary is given in
Section 5 and proofs can be found in the Appendix.

2 Categorical Value Disagreement

The purpose of this section is to lay out categorical value disagreement, i.e., notions
that only state that agents agree or disagree without explicitly providing a numerical
degree of agreement or disagreement. As it will turn out soon, even simple cate-
gorical disagreement can be defined in many different ways. We start with a brief
exposition of a simplified monist value representation based on a single preference
relation for each agent, and we will stick to this framework throughout this article.
There are, of course, many other forms of disagreement that are not covered by the
following definitions such as direct belief disagreement and metalinguistic disagree-
ment. Limitations of the simple preferences-based account used will be addressed
in Section 4.

2.1 Order-based Values

We write ľx for the complete preorder of agent x and a ńx b for the fact that it
is not the case that a ľx b (and likewise for other relation symbols). It is usual to
define a strict order and an equivalence relation from the preorder as follows (for
any alternatives a, b):

a ąx bôDf a ľx b & b ńx a

a „x bôDf a ľx b & b ľx a

The former is customarily called (strict) preference, the latter indifference, and
the underlying preorder is known as weak preference. Taken as (the approximation
of) a single value ‘better than’ (in some respect), indifference may in turn be
understood as ‘equally good’ and weak preference as ‘at least as good as’.5 It
follows from this formalization of values that if A is non-empty and finite, then
every agent has a set of most preferred alternatives given as:

maxpA, xq “ ta | @b : a ľx b, where a, b P Au (1)

From now on it is assumed that A is indeed finite and not empty. This makes
sense at least for human agents who usually only have to consider finitely many
alternatives at a time.

3



2.2 Pairwise Value Agreement and Disagreement

We start the investigation by defining categorical pairwise agreement and disagree-
ment between two agents. These definitions will later be extended for dealing with
groups of agents, i.e. obtaining notions of disagreement between three or more
agents, and will also form the basis of some of the accounts of graded disagreement
that are the subject of Section 3.

If the values of two agents are represented by preorders, how can value disagree-
ment be defined? It is instructive to look at agreement first. The two possibilities in
Table 1a and Table 1b leap out.

x
y

a ą b b ą a a „ b

a ą b 1 0 1
b ą a 0 1 1
a „ b 1 1 1

(a) Loose Agreement

x
y

a ą b b ą a a „ b

a ą b 1 0 0
b ą a 0 1 0
a „ b 0 0 1

(b) Strict Agreement

Table 1: Bivalent pairwise agreement between two agents.

These tables indicate exclusive options that exhaust all possible ways in which
two agents may compare two alternatives a and b. A 1 indicates that x and y are
in (the given type of) agreement, whereas a 0 indicates that x and y do not agree.
Correspondingly, Table 2a and Table 2b provide truth-conditions for single instances
of pairwise disagreement.

x
y

a ą b b ą a a „ b

a ą b 0 1 0
b ą a 1 0 0
a „ b 0 0 0

(a) Narrow Disagreement

x
y

a ą b b ą a a „ b

a ą b 0 1 1
b ą a 1 0 1
a „ b 1 1 0

(b) Wide Disagreement

Table 2: Bivalent pairwise disagreement between two agents.

As can be seen from these tables, wide disagreement corresponds to strict
agreement and narrow disagreement to the loose version of agreement. One table
may be obtained by negating the other respectively. When indifference a „ b is
considered ‘half-compatible’ with a ą b and b ą a, the trivalent generalizations of
Table 3 are obtained.
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x
y

a ą b b ą a a „ b

a ą b 1 0 1/2
b ą a 0 1 1/2
a „ b 1/2 1/2 1

(a) Trivalent Agreement

x
y

a ą b b ą a a „ b

a ą b 0 1 1/2
b ą a 1 0 1/2
a „ b 1/2 1/2 0

(b) Trivalent Disagreement

Table 3: Trivalent pairwise agreement and disagreement between two agents.

Let R stand for one of the relations defined from the tables, that is xRy is true
if the respective table yields 1, false otherwise. It is then easy to see from Table 2
that wide and narrow disagreement are anti-reflexive, i.e.  Rpa, aq for all a P A.
Correspondingly, their respective negations loose and strict agreement are reflexive.
Furthermore, Tables 1 & 2 are symmetric around the upper-left to bottom-right
diagonal, which translates to the symmetry of the respective relations: aRbÑ bRa
for all a, b P A. Moreover, neither narrow nor wide disagreement is transitive, and
that is how things should be. If x disagrees with y and y disagrees with z, the reason
for this could be that x and z completely agree on each other and jointly differ
from y. Strict agreement is also transitive, which follows from the fact that Table
1b preserves the identity of pairwise comparisons. An analogous line of reasoning
reveals that loose agreement is not transitive. If for example a ąx b, a „y b and
b ąz a, then x loosely agrees with y and y loosely agrees with z, but x and z agree
neither loosely nor strictly. Consequently, loose agreement is not very useful in
situations of choice when three or more agents need to coordinate their behavior
in some way; for this purpose, it is really too loose. Moreover, it can be proved
that its dual counterpart narrow disagreement does not give rise to a proper distance
measure (see Appendix B). Nevertheless, loose agreement and narrow disagreement
can be intuitively very compelling in certain choice situations between two agents.
Consider for instance a situation in which x and y are talking about whether they
would like to go (a) to the cinema or (b) to a fancy restaurant. If a ąx b and a „y b,
then there is no real disagreement: Agent y does not really care, and, in this limited
sense, they both agree to go to the cinema.

For non-choice guiding values the difference between preferring one alternative
over another versus being indifferent between them starts to matter. Take for instance
a heated discussion between two music lovers whether (a) ‘Beggars Banket’ or
(b) ‘Exile on Main Street’ is the best Rolling Stones album ever. The difference
to the previous example is that in non-choice situations ‘„’ can be interpreted in
several ways. If it means ‘I don’t care’, as the common label ‘indifference’ suggests,
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then there might not be a real disagreement. But it can also be interpreted as the
substantial position that the two albums share the first place, and in this case the
two agents are in genuine disagreement. The second interpretation is prevalent in
non-choice situations, but we will nevertheless stick to the slightly misleading term
‘indifference’ in abstract examples, because it is the common term in the literature.
Anyway, once a particular value predicate is plugged in, the problem goes away,
because the predicate makes the intended interpretation clear. For example, there is
no doubt that ‘equally good’ must be understood in the second sense.

To summarize, narrow disagreement seems to be sometimes adequate for choice-
guiding aspects of values when two agents are concerned, whereas wide disagree-
ment is the default in other situations. Trivalent disagreement does not suffer from
the same technical problems as narrow disagreement while allowing one to treat
indifference differently from strict preference, and so it provides a reasonable middle
ground between wide and narrow disagreement. In the above example, one might
say the two agents agree with respect to the question of whether they should go to
the cinema, but also disagree a bit with respect to the question whether they are
willing to go to a restaurant, since y would just as well go to the restaurant whereas
x really prefers to go to the cinema. Trivalent disagreement captures such cases
well and will therefore be used as a main basis for the distance-based accounts of
Section 3.

2.3 Categorical Disagreement

In the previous section, disagreement between two specific alternatives was consid-
ered. In this section, disagreement is defined in terms of whole preference relations
rather than single comparisons. An important concept is what we call top disagree-
ment. The agents in a group G are in top disagreement if and only if the following
condition holds.

č

xPG

maxpA, xq “ H (2)

Correspondingly, if this intersection is not empty, then they are in top agreement.
Obviously, when the agents in a group G are in top disagreement, then the agents
in a subset of G may be in top agreement. Moreover, according to this definition
one agent always agrees with himself: (2) is always false if G is a singleton,
given the initial assumptions that A is non-empty and finite.6 Note that this form
of disagreement is implicitly based on loose agreement, hence also on narrow
disagreement. If a „x b is topmost for agent x and a alone is topmost for y,
which implies a ąy b, then they are in top agreement. Top agreement is useful
for determining whether additional mechanisms like voting, forming coalitions, or
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Id Quantification Conditions Naming Suggestion
narrow wide

(7) Da, b Dx, y φ1 ψ1 minimal disagreement
(8) @a, b Dx, y φ ψ weak agent-minimal disagreement
(9) Dx, y @a, b φ ψ strong agent-minimal disagreement

(10) @a, b@x, y φ ψ total disagreement
(11) Da, b@x, y φ ψ strong collective disagreement
(12) @x, y Da, b φ ψ weak collective disagreement

Table 4: Conditions for categorical disagreement for domains with two or more
elements.

making compromises are needed in a situation in which the alternatives represent
possible action choices. If there is no disagreement on the top alternative, it can,
under normal circumstances, be chosen in a situation of social choice in which only
one or more winners need to be determined.7

From a logical point of view, combining Tables 2a and 2b with suitable quantifi-
cation leads to twelve notions of disagreement. For brevity we use the following
schemes:

φ– a ąx bÑ b ąy a (3)

φ1 – a ąx b & b ąy a (4)

ψ – ra ąx bÑ b ąy as _ ra „x bÑ pa ąy b_ b ąy aqs (5)

ψ1 – ra ąx b & b ąy as _ ra „x b & pa ąy b_ b ąy aqs (6)

For domains with two or more alternatives and two or more agents, Table 4 lists
the respective conditions for disagreement along with naming suggestions.

Like every so often, the choice of attributes like ‘weak’, ‘strong’ and ‘mini-
mal’ turns out to be a double-edged sword. The attributes were chosen to reflect
the logical strengths of the definitions, for it follows by classical logic that strong
agent-minimal (collective) disagreement implies weak agent-minimal (collective)
disagreement, weak agent-minimal (collective) disagreement implies minimal dis-
agreement, and total disagreement implies all of them. However, if one thinks of the
notions in terms of the minimal violation of agreement that needs to obtain in order
for the respective type of disagreement to hold, then the supposedly weakest form of
disagreement could also be considered to be the ‘strongest’. Suppose, for example,
that we negate wide minimal disagreement and consider the resulting formula a
condition for a form of agreement. The resulting form of agreement is the strictest
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possible:

 Da, b Dx, y : pa ąx b & b ąy aq _ pa „x b & ra ąy b_ b ąy asq

ô@a, b@x, y rpa ąx b & b ąy aq _ pa „x b & ra ąy b_ b ąy asqs

ô@a, b@x, yrpa ąx bÑ a ąy bq & pa „x bÑ a „y bqs.

If agents are in this type of agreement, then they have exactly the same preferences.

3 Graded Value Disagreement

The definitions of the previous sections are limited, as they only tell us whether
agents disagree but not to what extent they disagree. More fine-grained distinctions
can be introduced in the form of measures of disagreement. These express the
nearness or distance of preference-based values between agents in a group.

Quantitative measures between orderings have been investigated for a long
time in computer science in the context of approximate string matching and error
correction,8 and are applied in various related fields like fuzzy pattern matching,
bioinformatics, and statistics. A fairly complete collection of distance measures
can be found in various sections of Deza and Deza (2009) and a comprehensive
overview is given in Hassanzadeh (2013). Measures of disagreement have also
been used in recent work on distance-based social choice, where they are known as
‘consensus measures’.9

Many measures that are useful in other domains are not well-suited for com-
paring values-qua-preferences. For example, some string comparison measures
such as the Damerau–Levenshtein distance allow edit operations like substitution,
deletion, or transposition of distant elements. While such operations make sense
for the purpose of spell checking, as for example, ‘Cappachino’ can be turned
into ‘Cappuccino’ by substituting the second ‘a’ by a ‘u’ and ‘h’ by ‘ c’, and the
two strings are similar to each other from the perspective of correcting misspelled
words, preferences are defined over the same set of alternatives in the current setting
and therefore edit operations do not occur naturally. Instead, the distance of a per-
muted element from the top is important: In comparison to pa, b, c, dq the sequence
pa, c, b, dq should come out better than pa, c, d, bq, because b has moved farther away
from the most preferred alternative a in the second case.

In the social choice setting two measures have received particular attention: the
inversion number of a permutation (also known as Kendall’s τ and Kemeny distance)
and Spearman’s footrule distance, both of which have already been investigated
by Kendall (1970) and Kemeny (1959).10 Although many other measures can be
defined by mapping preference relations to vectors of real numbers and choosing
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one of the distance metrics discussed in Deza and Deza (2009), we stick to these
common measures in what follows. After introducing some notational conventions
in Section 3.1, we generalize the measures for strict linear orders to preorders in
Section 3.2 by averaging, a method that is also found in the social choice literature
(although the details vary slightly from author to author). We then introduce some
measures that are directly based on the notions of disagreement of the last section,
thereby drawing the connection between categorical and graded disagreement that
has not been investigated previously in this form. The most important result of this
section is that narrow disagreement does not give rise to a proper distance measure.
Afterwards, in Section 3.3 we introduce variants of the standard measures that are
position-sensitive and give an example of why these are sometimes more adequate
for modeling value disagreement. They are themselves not distance measures, but
lead very naturally to an observer-dependent measure of disagreement.

3.1 Preferences as Permutations

Instead of looking at the preferences between alternatives themselves, it is often
helpful to abstract away from the alternatives and consider one ordering as a permu-
tation of another. Sticking to strict preferences for the time being, we can map a
preference p of length n to the sequence of integers 1, 2, 3, 4, . . . , n. Another strict
preference relation q is then a permutation of this sequence of integers.

To make this idea precise, we write the vector of alternatives ordered from
the most to the least preferred alternative as px “ pa1, a2, a3, . . . , anq and define
an index function Rpx “ ra1 ÞÑ 1, a2 ÞÑ 2, a3 ÞÑ 3, . . . , an ÞÑ ns such that the
most preferred alternative a1 has index 1 and alternative aj gets index j “ i ` 1
whenever ai ąx aj and there is no intervening ak for which ai ąx ak ąx aj . The
reverse mapping R´1px p.q assigns an alternative to a given number based on that
alternative’s ordering by px. Since for every two strict orders over the same domain
one is a permutation of the other and vice versa, it is possible to express another
preference relation q as a permutation of the sequence of integers 1, 2, . . . , n by
defining a mapping πpp, qq “

`

1 2 3 ... n
k1 k2 k3 ... kn

˘

where ki “ RqpR
´1
p piqq “ Rqpaiq

for the i-th element ai in p. We write πipp, qq for the number πpp, qqpiq assigned
by this mapping to index i and will use the shortcut πi for πipp, qq whenever p, q
can be inferred from the context.11 So we will generally be looking at permutations
written in the canonical form

`

1 2 3 4 ... n
π1 π2 π3 π4 ... πn

˘

, where the sequence 1, 2, . . . , n
stands for the ordering if the first agent’s preferences and πi for the corresponding
position of these items in the second agent’s preferences.

What might look complicated at first glance greatly simplifies notation and
some of the definitions below, for it allows us to use a simple one-line notation for
comparing the strict preferences of two agents. For example, 3 4 1 2 represents a
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second agent’s preferences in shortcut notation when the first agent’s preferences
are ordered by 1 2 3 4 . The two-line representation of this permutation is

`

1 2 3 4
3 4 1 2

˘

.
Some more definitions will be needed. Taking permutations as a basis, an

inversion is a pair pπi, πjq such that i ă j and πi ą πj . So the set of all inversions
of π is Iπ “ tpi, jq | i ă j & πi ą πju. The cardinality of this set equals the
inversion number. For example, in case of the above two preferences their inversion
number Ipp, qq is 2` 2` 0 “ 4, since 3 ą 1, 3 ą 2, 4 ą 1 and 4 ą 2. The inverse
permutation π´1 of a given permutation πpp, qq is the inverse function of π. For
example, the inverse permutation of

`

1 2 3 4
2 3 4 1

˘

is the mapping
`

1 2 3 4
4 1 2 3

˘

. In contrast
to this, we call the reverse list of a given sequence of elements p the sequence in
which the order of p is reversed, and correspondingly talk of a reverse permutation
of π as that permutation in which the ordering of the elements that are mapped
to is reversed. For instance, the reverse permutation of the identity permutation
1 2 3 4 is 4 3 2 1 , and the reverse permutation of 2 3 1 4 is 4 1 3 2 . Finally, ‘. . . a
derangement of a list is a permutation of its elements such that no entry remains in
the original position.’ (Packel, 2000, p. 96)

The above definitions are only valid for strict (linear) orders like ‘ą’, but what
about preorders? Obviously, when the ordering is not strict a permutation will not
do; an adequate representation needs to take indifference classes into account. As a
shortcut notation, we mark alternatives between which the agent is indifferent with
corners. The sequence x1 3y4 2 represents the preferences a „ c ą d ą b taken as a
permutation of pa, b, c, dq, and we may call such a sequence, for the present purposes,
a generalized permutation. This is only a notational convention.12 According to this
convention, x1 3y4 2 and x3 1y4 2 could be treated as mere notational variants of
the same generalized permutation. However, for reasons that will become apparent
in the next section we sometimes wish to take into account the order of numbers
within the corner brackets as well and so the two sequences are not considered
identical in what follows.

3.2 Generalized Versions of Common Distance Measures

There are several ways of computing distances between generalized permutations.
First, we may use one of the tables of the previous section directly. Let us denote
by ∆W px, y, a, bq the single pairwise comparison function that is implicitly defined
by Table 2b and whose outcome is either 0 or 1. For simplicity, the preferences
are supposed to be given by the agents. If for example a „x b and a ąy b then
∆W px, y, a, bq “ 1. Analogously, ∆N is the function that corresponds to Table 2a
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Example 1 Example 2
1 2 3 4 vs x1 2y4 3 1x3 2y4 vs x3 4yx1 2y

Comparisons ∆W ∆N ∆T ∆W ∆N ∆T

(1,2) 1 0 1/2 1 0 1/2
(1,3) 0 0 0 1 1 1
(1,4) 0 0 0 1 1 1
(2,3) 0 0 0 1 0 1/2
(2,4) 0 0 0 1 1 1
(3,4) 1 1 1 1 0 1/2

Column Sums: 2 1 1.5 6 3 4.5

Table 5: Two examples of using the truth-table method, ignoring duplicate compar-
isons.

and ∆T the one for Table 3b. A distance function can then be defined as follows:

Dαppx, qyq “
1

2

ÿ

a,bPA,
a‰b

∆αpx, y, a, bq, (13)

where ∆α stands for one of the above functions and we divide by two because of
double counting.13 For illustration, Table 5 gives the scores for px “ 1 2 3 4 versus
py “ x1 2y4 3 and for px “ 1x3 2y4 versus py “ x3 4yx1 2y.

While this way of linking explicit truth tables with distance functions is not
commonly found in the literature, it has the advantage of making it possible to adjust
the measures to additional relations or changes to existing relations, a feature that
will prove valuable in Section 4. The table-based measure for wide disagreement
corresponds to the cardinality of the symmetric difference between the two relations
ąx and ąy under consideration, which is another way of calculating an inversion
measure.14 The other variants can be regarded as generalizations.

Notice, however, that DN for narrow disagreement is not a proper distance
measure, because it does not satisfy the so-called triangle inequality that states
that Dpx, zq ď Dpx, yq ` Dpy, zq for a distance measure D (See Proposition 2,
Appendix B). As a condition, the triangle inequality ensures that a distance of a
segment cannot be larger than the distances between its parts, yet this is exactly the
case that may occur with DN . Recall from the previous section that x may loosely
agree with y and y may loosely agree with z even when x and z disagree, and in this
case the inequality is, of course, not fulfilled. So despite the intuitive appeal that
narrow disagreement might have in examples like the one discussed in the previous
section, DN must be treated with caution.
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We now turn to conventional methods not based on truth-tables. Since they use
some sort of averaging, they are implicitly based on trivalent disagreement, though
not directly based on a corresponding trivalent truth table. The idea of averaging
the ranks of members of each indifference class in a preorder is not new, it is
investigated in Kemeny (1959, pp. 586-591), Kendall (1970, Ch. 3) and also used in
recent work such as García-Lapresta (2011, Sec. 2.1) and Erdamar (2014, p. 16).15

For simplicity we use a method that is based on the permutation mapping defined
above. For a given generalized permutation p, let p̂ be the upwards ordered and p̌
the downwards ordered ‘flattening’ defined as follows: p̂ (p̌) is the same as p except
that all numbers in corners are written in a sequence sorted from the lowest (highest)
number first to the highest (lowest) number last within the corners.16 So for example
for p “ x1 2yx4 3y, p̂ “ x1 2yx3 4y and p̌ “ x2 1yx4 3y. Using this convention, an
overall measure may be obtained by averaging. Let D stand for a distance measure
that is only properly defined for strict orders. An averaged measure D can then be
obtained by simply setting Dpp, qq “ rDpp̌, q̌q `Dpp̂, q̌q `Dpp̌, q̂q `Dpp̂, q̂qs{4.

To give an example, Ip1 2 3 4, x1 2y4 3q “ rIp1 2 3 4, 2 1 4 3q ` Ip1 2 3 4,
2 1 4 3q`Ip1 2 3 4, 1 2 4 3q`Ip1 2 3 4, 1 2 4 3qs{4 “ p2`2`1`1q{4 “ 1.5. To
give another example, the generalized inversion number of x4 3yx2 1y with respect
to 1x3 2y4 is Ip1x3 2y4, x4 3yx2 1yq “ rIp1 3 2 4, 4 3 2 1q ` Ip1 2 3 4, 4 3 2 1q `
Ip1 2 3 4, 3 4 1 2q`Ip1 3 2 4, 3 4 1 2qs{4 “ p5`6`4`3q{4 “ 4.5. As Diaconis
& Graham lay out, the maximum value of an inversion measure is 1

2pn
2 ´ nq, and

so the normalized inversion number is Inpp, qq “ 2Ipp, qq{npn´ 1q.17

Similar to the inversion number is Spearman’s footrule. When a complete linear
order is permuted, Spearman’s footrule is given by

řn
i“1 |i ´ πi|, where i is the

index of the elements in the original sequence of length n and πi the element at i
of the permutation at hand. So for example the footrule measure for pc, d, a, bq as
a permutation of pa, b, c, dq is Sp1 2 3 4, 3 4 1 2q “ |1´ 3| ` |2´ 4| ` |3´ 1| `
|4 ´ 2| “ 8. To adjust the measure to a preorder, again the best and worse case
outcomes may be averaged: Spp, qq “ rSpp̌, q̌q ` Spp̂, q̌q ` Spp̌, q̂q ` Spp̂, q̂qs{4.
For instance, if p “ x1 2y3 4x5 6y and q “ x3 2 4yx5 6y1 , then p̂ “ 1 2 3 4 5 6 ,
p̌ “ 2 1 3 4 6 5 , q̂ “ 2 3 4 5 6 1 , and q̌ “ 4 3 2 6 5 1 . As the reader may confirm
for himself the final result is Spp, qq “ p12 ` 12 ` 8 ` 10q{4 “ 10.5. The
maximum value for the base measure is cn “ t12n

2u, hence the normalized measure
is Snpp, qq “ Spp, qq{cn. As a variant sometimes the squared differences are
summed up

řn
i“1pi ´ πiq

2 instead of taking the absolute value. Let S˚ stand for
the squared measure when it is generalized as laid out above. It has a maximum of
1
3pn

3 ´ nq and so the normalized variant is S˚npp, qq “ 3S˚pp, qq{npn2 ´ 1q.18

Which measure should be used? As has become apparent by now, these are
in fact two questions. First, one might ask which categorical notion of agreement
and disagreement a measure should be based on. With regard to this question,
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it is noteworthy that IN is not a proper distance measure and must therefore be
considered problematic. On the other hand, taking instead wide disagreement IW as
a basis for a general measure of disagreement ignores the reading of ‘„’ as genuine
indifference that is prevalent in situations of choice. As already mentioned in the
beginning, trivalent disagreement therefore seems to be a reasonable compromise
between the two conceptions, and it is shown in Appendix B that IT is also a proper
distance measure.

Second, one might ask whether Spearman’s footrule, the inversion measure,
squared versions or other measures should be chosen. Provided that any preorder
can be mapped to a vector of real numbers by averaging ties, in theory many
more distance measures in Deza and Deza (2009) such as Euclidean distance or
Minkowski distance could be defined.19 As of the time of this writing, no last word
on this choice has been spoken yet, and perhaps it is a matter of the application of
the measure. Regarding the ones defined above, except for IN which is not a proper
measure, all of the above variants seem to be acceptable and various properties
relating them to each other and similar measures have been investigated by Diaconis
and Graham (1977) and Diaconis (1988, Ch. 6). Kemeny (1959, p. 588) argues that
when some additional, intuitively desirable constraints are added to the ones that
characterize distance measures, then the inversion number is the only metric that
satisfies them; but it is always possible to choose different requirements, of course.
A less desirable feature of Spearman’s footrule is that it can have several maxima.
For instance, 3 4 1 2 , 3 4 2 1 , 4 3 1 2 , and 4 3 2 1 have the maximal distance of 8
units (and, of course, 1 for the normalized version) from 1 2 3 4 . In contrast to this,
the squared footrule measure and the inversion number have their unique maximum
at the reverse permutation 4 3 2 1 .

3.3 Position-sensitive Distance and Perspectival Disagreement

Common as they are, the measures discussed so far might not be ideal for applica-
tions in formal axiology and social choice, as they remain agnostic about the relative
importance of the respective differences, although perhaps sometimes the relative
positions of alternatives should matter more. Consider for example, a group of three
agents, suppose that two of them can decide the outcome of the decision by majority
vote, and let the preferences be px “ 1 2 3 4 to py “ 2 1 3 4 and pz “ 1 2 4 3 . The
task of x is to find an ally that will help him to win. The inversion measure is 1
and Spearman’s footrule measures yield 2 for both candidates y and z respectively.
However, if the alternatives are fixed and the agents are in a situation of choice as
described, it seems preferable for x to choose z as an ally rather than y, because
the two agents top-agree with each other. An inversion between the two topmost
alternatives is more important in this example than one that occurs farther down the
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P
M

Dα I S S˚

py “ 2 1 3 4 7 3 7 25
pz “ 1 2 4 3 3 1 3 5

Table 6: Disagreement of preference P with px “ 1 2 3 4 , measured by M.

ladder.
To fix this problem, variants of the measures may be specified that take into

account the position within the ordering. Under the mapping πpp, qq and the reverse
mapping R´1p piq from numbers to elements in A according to preference p, we
suggest the following modified symmetric difference, inversion and footrule distance
functions:20

Dαppx, qyq “
n
ÿ

i“1

ÿ

bPA,
ai‰b

∆αpx, y, ai, bqpn` 1´ iq,where ai “ R´1px piq (14)

Ipp, qq “
n´1
ÿ

i“1

#tj : πi ą πj & i ă j ď nupn´ iq (15)

Spp, qq “
n
ÿ

i“1

|i´ πi|pn` 1´ iq (16)

S˚pp, qq “
n
ÿ

i“1

pi´ πiq
2pn` 1´ iq2 (17)

Hereby, (15)-(17) are defined for strict orders only but may be generalized by
averaging in the way laid out above. Table (6) yields the distances of y and z to
x for the above example, where the different versions of Dα yield the same result
because no indifference is at play.

All position-dependent measures evaluate the preferences of agent z as being
nearer to those of x than to y, i.e. there is less disagreement between x and z than
there is between x and y, because z’s preferences coincide with those x in the two
topmost places. One might argue that position-dependent measures more adequately
capture value disagreement because the more an agent prefers an alternative, the
more important it is to him and others in situations of choice.

However, (14)–(17) are not distance measures as defined in Appendix A, because
they are not generally symmetric. To see this, consider the permutation π “
`

1 2 3 4
2 3 4 1

˘

or short 2 3 4 1 . This may, for instance, represent the mapping of p “
pa ą b ą c ą dq to q “ pb ą c ą d ą aq. The inverse permutation is π´1 “
`

1 2 3 4
4 1 2 3

˘

or short 4 1 2 3 and represents the mapping from q to p. The distances
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P
M

Dα I S S˚

p, q 18 6 12 38
q, p 12 9 18 158

Table 7: Asymmetric disagreement.

are given in Table 7; none of them is symmetric. But this is a desirable property!
The failure of symmetry of these measures expresses the fact that agents perceive
differences in value judgments differently, depending on their own preferences. To
illustrate this, a concrete example might be helpful. Suppose p ranks ice cream
flavors as chocolate ą vanilla ą strawberry ą pistachio, and q ranks them as vanilla
ą strawberry ą pistachio ą chocolate.21 These preferences corresponds exactly
to the above permutations. In this example, p perceives the difference between
chocolate and any other choice as very significant, but since p’s top choice is at the
bottom of q’s ranking, q does not care about chocolate at all. This perspectivity of
assessments based on the relative importance given by the ranking is reflected by
(14)–(17).

There is an interesting way to regain symmetry by introducing a third agent
who acts as an observer. Identifying the agents with their (strict) preferences for
convenience, let r be an observer who measures the agreement between p and q.
Recall from Section 3.1 that in the present notation πpr, pq is the permutation taking
r to p, and πpr, qq is correspondingly the one that takes r to q, where both are
expressed as sequences of numbers. An observer-dependent footrule measure can
then be defined as follows:

Srpp, qq “
n
ÿ

i“1

|πipr, pq ´ πipr, qq|pn` 1´ iq (18)

This measure is symmetric. The reason that symmetry failed in the previous example
is that Sppp, qq need not coincide with Sqpq, pq. In contrast to this, Sppp, qq “
Sppq, pq will hold, but this reflects p’s assessment of the agreement from his own
perspective. This perspectivity of position-sensitive disagreement might also explain
why two rational observers may disagree about the differences of other people’s
values, for example, about the question of how near the positions of two political
candidates are, even though they base their judgments on the same evidence. If
r ‰ s, then Srpp, qq and Sspp, qq need not coincide, because some individual
comparisons of p’s and q’s preferences may matter more to r than to s, and vice
versa.
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4 From Preferences to Values

The methods for modeling disagreement that have been discussed so far work for
any kind of preference relations that are based on total preorders. In the remainder
of this article we will lay out some ways of making these types of representations
more realistic and more suitable as representations of the structure of values. In
Section 4.1 a way is laid out to generalize the account to the case when an agent
has incomplete information about the preferences of another agent. Sections 4.2 to
4.5 then deal with issues like noncomparability and parity that have been discussed
specifically in the literature on values. For reasons of space we restrict the discussion
to the most common philosophical worries about preference-based values and how
these may affect the modeling of disagreement.

It is important to distinguish between two different types of problems, those that
concern the representation of an aspect of a value by a single preference relation
and those that concern multiple values or multiple aspects of a value. For lack of
space we focus on the first type of problems and can only strife the second type of
problem in Section 4.5.

4.1 Incomplete Information

So far it has been silently presumed that agents have full knowledge of the prefer-
ences of all other agents in a group. This is not very realistic, and so in this section
a simple modification is laid out that allows agents to have incomplete information.

Lack of information can be dealt with in various ways. One of them would be
to make the preorders in question partial, allowing an agent to maintain a partial
representation of another agent’s preferences. This will have the effect that an
agent either has full knowledge of another agent’s particular preference between
two alternatives or no information at all; no grey-zone is expressible, since the
alternatives in question will become incomparable.22 This is adequate for the
representation of essential incompleteness in the next section, but for the purpose of
expressing doubt a more fine-grained way of dealing with incomplete information is
called for. In epistemic logic doubt is routinely modeled by sets of possible worlds
that an agent cannot distinguish, and the same approach can be used for the present
task. One may represent an agent x’s belief about the values of an agent y by a set
of preorder relations as dependent of x.

Let Bpx, yq be a function taking two agents and yielding a non-empty set of
preorder relations over A expressing x’s belief about y’s preferences. Consider,
for instance, in the abstract permutation notation, px “ 1 2 3 4 and Bpx, yq “
t1 2 4 3, 2 1 4 3, x1 2y4 3u. This indicates that x is sure that y prefers 4 over 3
but unsure whether 1 ą 2, 2 ą 1, or 1 „ 2.23 This way of expressing doubt
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is sufficiently fine-grained to deal with partial information and also allows one
to express the update (i.e., a particular form of learning) of an agent’s beliefs
about another agent’s preferences in light of new evidence. For example x might
realize, in one way or another, that y cannot possibly prefer 2 ą 1 but remain
unsure about the two remaining options; an update of the beliefs at the place x, y to
B1px, yq “ t1 2 4 3, x1 2y4 3u describes this learning process.

Given this representation of uncertainty, there are many ways in which an
agent x might assess the partial information he believes about another agent y’s
preferences. Three of them are of particular interest:

E1px, yq “ min
qPBpx,yq

Dppx, qq optimist assessor (19)

E2px, yq “ max
qPBpx,yq

Dppx, qq pessimist assessor (20)

E3px, yq “
ÿ

qPBpx,yq

Dppx, qq{|Bpx, yq| averaging assessor (21)

The optimist assessor picks the shortest distance, i.e. the one between 1 2 3 4 and
1 2 4 3 in the above example before the learning process. In contrast to this, a
pessimist assessor bases his evaluation on the worst possible case, i.e. the distance
between 1 2 3 4 and 2 1 4 3 in the example, whereas the averaging assessor averages
all distances, as the name suggests.

The averaging assessment method is generally more adequate than the others
in situations of choice. For example, in the case laid out above, when agents may
form alliances to influence the outcome of a voting procedure, optimist and negative
assessment may give very counter-intuitive recommendations. Take, for instance,
px “ 1 2 3 4 as before, Bpx, yq “ tx1 2y4 3, 1 2 4 3, 2 1 4 3u and Bpx, zq “
t1 2 4 3u. The optimist assessment method would predict that x’s uncertainty about
y’s preferences should play no role in the comparison, and so agent y would be just
as good as an ally as z. This cannot be right in a situation of choice, since x and
z already agree on the topmost alternatives. Likewise, if Bpx, zq “ t2 1 4 3u, a
pessimist assessment would predict that y and z were on a par, whereas in this case
y should be judged nearer to x. In comparison to the other methods, averaging tends
to minimize the errors that result from guessing the wrong way in repeated trials.24

4.2 Essential Incompleteness

The incompleteness of the previous section was epistemic, based on the fact that
agents do not know the preferences of others but may infer them from partial clues.
However, some moral philosophers claim that there are more essential forms of
value incompleteness based on various types of value incommensurability, as they

17



x
y

a ą b b ą a a „ b a ‖ b

a ą b 0 1 1 1
b ą a 1 0 1 1
a „ b 1 1 0 1
a ‖ b 1 1 1 0

Table 8: Wide disagreement with strong incomparability.

may occur in case of genuine moral dilemmas.25 Although it seems striking that
many if not most purported cases of value incommensurability arise from conflicts
between different aspects of values or different values in situations of choice, and
thus belong to the topic of value pluralism under which they are also commonly
discussed, let us briefly address the possibility of such essential incompleteness
within one value dimension, i.e., within a preference relation that is supposed to
represent such a value. This type of incompleteness will occur, for instance, when
multiple preference relations are aggregated into one overall ordering for decision
making. In this case the preorder relation representing that respective (aspect of)
a value can only be a partial relation. Two alternatives are incomparable a ‖ b iff.
neither a ą b nor b ą a nor a „ b.26 There are two very different approaches to
deal with this situation.

First, one might restrict relations until they ‘fit together’. The restriction of a
binary relationR to a domainD is written as usual asR|D “ tpa, bq|aRb and a, b P
Du. Now let Ax Ď A be those alternatives for which ľx is defined. Then in order
to compute the distance between two agents x and y using one of the methods of
the previous section, only the relations ľx |pAxXAyq and ľy |pAxXAyq are taken into
account. In other words, only alternatives that both agents consider comparable go
into the measure of disagreement. However, this method can lead to counterintuitive
results. For instance, take px to be 1 2 3 4 and, using square brackets to indicate
incomparability, py to be 1r234s. Then the method stipulates that x and y fully
agree, since Ax XAy only contains one element. Such borderline cases aside, the
method may be useful in situations of choice, for if an agent really cannot compare
two alternatives at all, then these ought not influence his final decision.

The second method is based on the idea that incomparability is another, dis-
tinct case that leads to disagreement unless both agents consider two alternatives
incomparable.27 This case can simply be added to the tables to obtain one of the
table-based measures. Table 8 lists the scores for wide disagreement with strong
incommensurability. The values for noncomparable alternatives should be the same
in the corresponding table for narrow disagreement.
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This seems to be the right way to approach noncomparability in general. Ex-
cept for a limited number of choice situations in which noncomparability can be
translated to ‘it does not matter which choice you make’ (akin to the case for nar-
row disagreement mentioned in the beginning), Table 8 reflects the way in which
noncomparability is commonly understood. If x thinks ‘Beggar’s Banket’ is better
than ‘Exile on Main Street’ while y believes these albums cannot even be compared
with each other, then they disagree.

4.3 Parity

In a series of publications, Chang (1997b, 2002, 2005, 2012) has argued that there
is a fourth kind of value relation besides ‘better than’, ‘equally good as’ and ‘worse
than’ that she calls parity. In her view two alternatives are sometimes not comparable
according to the traditional value relations but may nevertheless be considered on
a par. For example, if one is asked to compare the creativity of Mozart with that
of Michelangelo, one might consider them on a par without thereby implying that
their creativity can be compared directly by any of the other value relations. We
do not wish to repeat Chang’s main arguments here and instead refer to Chang
(2002). Her suggestion has been taken up by various authors such as Gert (2004,
2015), Carlson (2010), Rabinowicz (2008, 2010), Rabinowicz et al. (2012), and
Gustafsson (2013), and so it is worth taking a look at what the existence of parity
might imply for the notions of agreement and disagreement discussed so far. As in
the previous section, one might argue that parity can only ever occur due to conflicts
in comparing alternatives under several values or several aspects of a value. If that
is so, then it only makes sense to consider parity in a multiattribute setting, which is
briefly discussed in Section 4.5 but generally goes beyond the scope of this article.
But at least two authors, Carlson (2010) and Gustafsson (2013), have considered
parity as a single attribute relation. In this view ľ is only partial and an additional
relation — for parity is added, and one might ask what consequences this has for a
measure of disagreement.

A first, naive approach to accommodate the measures is based on the idea that
parity is sufficiently similar to ‘equally good’ that the differences do not matter
in the context of modeling agreement and disagreement. The method would thus
consist in constructing a relation ľ1x for each agent x such that a „1x b iff. a —x b
for the equivalence relation part of ľ1x, and then use an existing measure. This
method is flawed, however, since according to Chang (2002) parity is not transitive.
So it is possible to have a — b, b — c and a ą c, for instance, and then there is
no unique mapping of a preference with parity to those without, as the diagram in
Figure 1 illustrates. If at all, this case could only be regarded as a mixture of x1 2y3
and x1 2 3y.
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Figure 1: The intransitivity of parity; dashed lines symbolize the parity relation.

x
y

a ą b b ą a a „ b a — b

a ą b 0 1 1/2 1
b ą a 1 0 1/2 1
a „ b 1/2 1/2 0 1/4
a — b 1 1 1/4 0

Table 9: Four-valued disagreement with parity.

Again, the table-based method seems more advisable. Since a — b is intuitively
nearer to a „ b than a „ b is to, say, b ą a, a four-valued approach like in Table 9
might make sense. But for the reasons laid out above, in a strictly bivalent setting the
table should look like Table 8 in a strictly bivalent setting, allowing for agreement
only if a —x b and a —y b.

4.4 Alternative Base Relations

Apart from partiality and adding relations, a common type of critique of preference-
based representation of values is that one or more of the base relations—a preorder
for weak preference and/or a strict linear order for strict preferences and an equiva-
lence relation for indifference—are not right. For example, Temkin (1987, 2012) has
argued pervasively against the transitivity of betterness, and approaches based on
preferences without full transitivity have been investigated extensively in decision
making.28

Such alternative approaches go beyond the scope of this article and we confine
ourselves to just a brief remark. If transitivity is given up, then a reasonable
and paradox-free measure of disagreement can only be obtained after interesting
and manageable preference cycles have been distinguished from ‘bad ones’. For
example, a ą b ą c ą d ą b and b ą a ą c ą d ą a are interesting, as
they individually allow for decisions in a choice situation and could be treated as
a ą b „ c „ d and b ą a „ c „ d respectively. If you want to buy a new car and
one of them clearly comes out on top of all others (is ‘the best’ one for you), then
any preference cycles and other conflicts among the remaining cars do not matter.29
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In contrast to this, a full cycle like a ą b ą c ą a is irrational and unusable for
making a rational choice, because if you pick a then c is better, if you pick c, then b
is better, and if you pick b, then a is better, and thus you can never choose the best
option.30 Similar problems may arise with semiorders of Luce (1956). However,
a detailed investigation of the possibility of measuring disagreement with such
non-standard base relations is left for another occasion.

4.5 Complex Values and Value Pluralism

Probably the strongest critique of equating values with single preference relations
is that values are rarely if ever unidimensional. A typical use of ‘better than’, for
instance, will involve not one but many different comparisons, because an alternative
may be better than another in one respect but worse in another. As already suggested
above, many problems of values seem to be related to the problem of how to
aggregate different comparative judgments, different value dimensions, into an
overall evaluative assessment. We will now briefly lay out how a preference-based
approach may deal with different aspects of a value and, perhaps equivalently, with
the use of different values for evaluating alternatives, and address the question of
what this means for measures of value disagreement.

For plural values, several base relations are needed. Theories of multi-attribute
utility theory like in Keeney and Raiffa (1976) could provide a starting point. These
allow one to evaluate alternatives according to several attributes which are then
combined into an overall assessment. So instead of one preference relation a whole
family is used for each agent, and in choice situations these are aggregated by first
representing them via numerical ‘value functions’ v1, v2, . . . , vm for m attributes
and subsequently combining their outputs by some aggregation function F into an
overall assessment:

vpx1, x2, . . . , xmq “ F rv1px1q, v2px2q, . . . , vmpxmqs (22)

In this representation, each value function vip.q represents a preference relation over
alternatives and possibly some additional cardinal information. The value function
encodes an evaluation and corresponding preference ordering of an attribute or
aspect of the alternatives, and the overall evaluation is a function of the evaluations
of these individual aspects. The problem of how to find an F that is compatible
with the m preference relations represented by the value functions v1, . . . , vm is
known as the Decomposition Problem in the theory of conjoint measurement. In
practice, weighted sum is often used for F , which imposes strong independence
conditions between the preferences (Krantz et al., 1990, Ch. 6), but many other
types of decompositions are possible.31
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We want to leave it open at this time whether this is the right way of tackling
plural values, but wish to point out a potential misapplication of this method for the
modeling of value disagreement. If the above type of approach is used, then the
method for aggregating preference relations for the purpose of choice-guidance—
function F in the above decomposition problem—does not need to provide the
basis of the way in which individual measures of disagreement for the components
are combined.32 At least a substantial argument would be needed to support the
claim that agreement and disagreement are directly linked to the way values are
aggregated for choice-guidance, and it is hard to see how this case could be made in
general. Accepting (22) essentially means acknowledging that there are no strong
moral dilemmas: As long as no partial functions are allowed, the formula implies
that all attributes are comparable with each other. It is a separate question to ask
whether

Dpp1x, . . . , p
m
x ; p1y, . . . , p

m
y q “ GrDpp1x, p

1
yq, . . . , Dpp

m
x , p

m
y qs (23)

is an adequate representation of value disagreement (and, correspondingly, for value
agreement) for some particular choice of G, where pix is the i-th preference relation
of agent x and G is some function that aggregates the individual distance measures,
and such overall notions of agreement and disagreement may be of limited value
even in the formal setting of a ‘multi-agent logic of value’. As an example, take two
persons who partially agree and partially disagree about some controversial issues.
Suppose, for instance, that John is strongly against liberal abortion laws whereas
Mary is strongly for them, yet both agree that taxes should rather be lowered than
raised. An overall measure like (23) will predict that they moderately agree if the
two attributes cancel out each other respectively in the overall comparison. In some
contexts this might be the right answer but in others it seems wholly inadequate. It
is striking, for example, that differences in John’s and Mary’s behavior with regards
to abortion cannot be explained by the overall measure. Often individual aspects of
a value need to be taken into account. This is not surprising, of course, since in a
decision model of type (22) one attribute may decide the outcome of a decision.

5 Summary

Values have been modeled by preorders and twelve different conceptions of cate-
gorical value disagreement were introduced. We then discussed the use of distance
measures to express value disagreement by degree in the same formal setting. Sev-
eral ways of adjusting known measures from linear orders to preorders by averaging
have been laid out, and non-symmetric position-sensitive variants of these measures
have been investigated that weigh disagreement between more preferred alternatives
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higher than disagreement between less preferred alternatives and give rise to a
concept of observer-dependent value disagreement. Further discussed have been
various ways of making preference-based approaches more realistic for a general
axiology and the impact of such modifications on the corresponding definitions of
disagreement.

Future research is planned to address the question of how to further generalize
distance measures and observer-dependent measures to non-traditional value repre-
sentations like those based on semiorders, sets of partial preorders and preference
intensities.

Appendix

A. Distance Measures

A distance measure is a function Dpx, yq of two arguments with domains X,Y
into the real numbers that satisfies the following properties (Kemeny, 1959, p. 587),
(Deza and Deza, 2009, p. 16):

Dpx, yq “ 0 ô x “ y coincidence (24)

Dpx, yq “ Dpy, xq symmetry (25)

Dpx, zq ď Dpx, yq `Dpy, zq triangle inequality (26)

It defines a metric over the space X ˆ Y . Throughout the article the domain is the
same for both arguments, namely the set of all linear ordering relations over the set
of alternatives A.

B. Proofs

In the following proofs it is assumed that the respective functions are based on a
non-empty permutation πpp, qq. Since this permutation is not given explicitly as
an argument, the following proofs concern in fact families of functions, but for
simplicity we will speak as if they were single functions in what follows. As a
shortcut, Aαx,y – tpa, bq | ∆αpx, y, a, bq ą 0u is written for the set of disagreement
pairs based on α.

Proposition 1 (Table-based Measures). DW and DT are distance measures.

Proof. (a) Coincidence: We prove both directions of the biconditional separately.
For proving the direction from left to right, assume (i)DW ppx, qyq “ DT ppx, qyq “
0 but (ii) px ‰ qy. From (ii) it follows that there is at least one pair a, b P A s.t.
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a ąx b but not a ąy b. But for this pair Table (2b) yields 1 and Table (3b) either 1 or
1
2 , and so it follows from (13), according to which the result is half of the total sum,
that DW ppx, qxq ě

1
2 and DT ppx, qxq ě

1
4 , contradicting the assumption. For the

other direction, assume (iii) p “ q but (iv) DW ppx, qxq ‰ 0 and DT ppx, qxq ‰ 0.
From (13) and the tables it follows that the measures cannot be negative, hence
because of (iv) that DW ppx, qxq ą 0 and DT ppx, qxq ą 0. It follows from the
tables that this can only be true if there is at least one pair a, b P A for which p and
q differ, contradicting the assumption.

(b) Symmetry: Observe that a „ b is symmetric and that, moreover, Tables (2b)
and (3b) are symmetric for ą, i.e. a ąx b and b ąy a yields one and b ąx a and
a ąy b yields one, and correspondingly for combinations of ą with „. From this it
follows directly that instances of (13) by ∆N and ∆T are symmetric, too.

(c) Triangle Inequality: The proof is direct by induction on the size of the set
of alternatives A. Notice first that positivity, i.e. Dpx, yq ě 0 for any x, y, holds
trivially because the tables contain no negative values. Case 1: Wide Disagreement.
Let A be the domain and let A1 “ AY tbu be the domain extended by one element
b and D1 be a new measure obtained from D and the extended domain. If A “ H,
then A1 “ tbu. In this case, b „x b, b „y b and b „z b hold by reflexivity and
totality of ‘ľ’, hence D1px, yq “ D1py, zq “ D1px, zq and so the inequality holds.
Suppose now that A contains alternatives a1, a2, . . . , an and that the inequality
holds for D. The revised measure between x and z is D1px, zq “ Dpx, zq ` k and
we need to show that D1px, zq ď D1px, yq ` D1py, zq. To do this, we assume a
scenario in which k is maximal, try to minimize the other distances and show that
the inequality still holds.

The parameter k is maximal if for all ai P A either (i) ai ąx b and b ąz ai,
or (ii) b ąx a and ai ąz b, or (i) is the case for some ai in a subset B of A and
(ii) for all remaining aj P pAzBq. The proof of case (ii) is parallel to that of case
(i) and therefore omitted. Case (iii) is a mixture of case (i) and (ii) and can be
omitted without loss of generality as well. (The only new element in A1 is b, so
the new measure can be constructed as the sum of the measures for B and AzB
like in cases (i) and (ii) and their proofs carry over.) Continuing with case (i), we
assume ai ąx b and b ąz ai for all ai P A and first try to make D1px, yq minimal.
This is the case when ai ąy b for all ai P A, since then D1px, yq “ Dpx, yq. But
then D1py, zq ´Dpy, zq “ k and so the triangle inequality is fulfilled for the new
measure D1. Likewise, if D1py, zq is made minimal by assuming that b ąy ai for
all ai P A, then D1px, yq ´ Dpx, yq “ k because by assumption ai ąx b holds,
and the inequality is fulfilled as well. It is easy to see that this holds in general:
Any equality of the agent’s preferences at a point ai, b between x, y (y, z) will not

24



increase the respective measure, but then there will be a corresponding increase
between y, z (x, y) that will suffice to ensure the triangle inequality.

Case 2: Trivalent Disagreement. The proof is analogous to the previous case. We
start by induction and consider an extended measure with one additional alternative
b. Let δpx, yq be a shortcut for ∆T px, y, a, bq. This time we list all possibilities for
a ąx b:

x δpx, yq y δpy, zq z δpx, yq ` δpy, zq δpx, zq

0 a ąz b 0 0
0 a ąy b 1{2 a „z b 1{2 1{2

1 b ąz a 1 1
1{2 a ąz b 1 0

a ąx b 1{2 a „y b 0 a „z b 1{2 1{2

1{2 b ąz a 1 1
1 a ąz b 2 0

1 b ąy a 1{2 a „z b 3{2 1{2

0 b ąz a 1 1

The five columns to the left can be read as a horizontally drawn ternary tree
with the respective distances as labels on the edges. The two rightmost columns
list the sum of the distances and Dpx, yq respectively; clearly, ∆T px, y, a, bq `
∆T py, z, a, bq ě ∆T px, z, a, bq holds for every possibility for arbitrary a P A. The
tables for a „x b and b ąx a are analogous. Induction over A completes the
proof.

The underlying reason for the following negative result is that loose agreement is
not transitive:

Proposition 2. DN does not satisfy triangle inequality.

Proof. Let A “ ta, bu and a ąx b, b ąz a, and a „y b. Clearly, pa, bq P ANx,z and
in this case ∆N px, z, a, bq “ 1, ∆N px, y, a, bq “ 0 and ∆N py, z, a, bq “ 0. Thus,
|ANx,z| “ 1 but DN px, yq `DN py, zq “ 0, providing a counter-example.

Proposition 3 (Position-sensitive Measures). Dα, I, S, and S˚ are not symmetric.

Proof. By counterexample. Suppose preference p and q are such that 2 3 4 1 is the
permutation that takes p to q. Then 4 1 2 3 is the inverse permutation taking q to p.
Table 7 on page 15 shows that Dpp, qq ‰ Dpq, pq when D is DW , I, S or S˚. Since
trivalent disagreement collapses to wide disagreement whenever the orderings are
strict, this example also works for DT .
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Notes

1Moral philosophers like Hansson (2001) and authors working on parity belong
to this tradition, see e.g. Chang (2002), Gert (2004), Carlson (2010), Rabinowicz
(2008), Rabinowicz et al. (2012). Some of this work is addressed in Section 4.

2Order-based representations have also used for graded belief in formal epis-
temology, see for example Baltag and Smets (2006, 2011) and Spohn (1999), and
so the methods laid out in this article could be used for measures of agreement
of the beliefs of agents. However, as will become apparent in Section 4, different
applications may come with different requirements and we only consider value
disagreement in what follows.

3The positions range from relativism Kölbel (2002, 2003, 2009), Lasersohn
(2005, 2008) and MacFarlane (2008), over defining the disagreement in terms
of violations of presuppositions of commonality (de Sa, 2008, 2009) to recent
meta-linguistic accounts Plunkett and Sundell (2013).

4See e.g. Meskanen (2006), Meskanen and Nurmi (2008), García-Lapresta
(2011), Erdamar (2014).

5As von Wright (1963) lays out in detail, there are many different forms of
goodness, and by sticking to single values we do not want to presuppose that all
varieties of goodness can be readily aggregated into one overall kind. Hence, the
additional qualifier ‘in some respect’, which will be left out in what follows for
brevity, though.

6For the infinite case additional well-foundedness conditions with respect to ľ

must be fulfilled, but as stated above, the infinite domain is not very relevant in
practice, though it is of great technical interest.

7This does not hold in general, though, since some voting methods do not
guarantee that an element that is at the top of the preference rankings of all agents
also becomes the winner.

8See for instance Hamming (1950), Lee (1958), Damerau (1964).

9See for instance Nitzan (1981), Meskanen (2006), Klamler (2006), Meskanen
and Nurmi (2008), Maynard-Zhang and Lehmann (2003), Konieczny and Pérez
(2005), Baldiga (2013), García-Lapresta (2011), Duddy (2012), Alcantud (2013),
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Can (2013). Notice that consensus measures encompass a larger class of group-
based measures of disarray, as they need not be based on pairwise disagreement.

10Strictly speaking, Kendall’s τ is any linear transformation of the inversion
number (Kendall, 1970, Sec. 1.17, p. 10).

11In combinatorics textbooks this is sometimes also written iπ, see for example
Cameron (1994, p. 29).

12The suggested notation is not to be confused with the cycle notation of a
permutation using parentheses to express a permutations in terms of its cycles.

13One might want to restrict the summation to 2-combinations of A instead, the
set of which is sometimes written

`

A
2

˘

, but the resulting formulas become cluttered
and harder to read.

14Cf. Kemeny (1959, p. 588). The symmetric difference between two sets A and
B is defined as AaB “ pAzBq Y pBzAq.

15We would like to thank an anonymous reviewer for having brought this to our
attention. In the (related) context of judgment aggregation a similar suggestion has
also been made by Rabinowicz et al. (2012).

16Another way of averaging is to transform a sequence like x1 2yx3 4y to the
sequence 1 1 2 2 with repetitions, but this becomes cumbersome when comparing
preferences with different numbers of equivalence classes. García-Lapresta (2011)
and Erdamar (2014) use vectors of real numbers that indicate the rank of each
alternative, where alternatives within an indifference class are assigned an average
rank between the ranks of antecedent and succedent alternatives, and base the
definitions on these vectors. For the most part the differences between those
methods are neglectable.

17See Kendall (1970, p. 5), cf. Diaconis and Graham (1977, p. 264: Table
1). Kendall (1970, Ch. 3) also discusses a different normalization factor that has
some advantages when there are many ties. Note that Kendall’s rank correlation
coefficients can take negative values and the pairwise measures are normalized to
r´1, 1s, whereas a proper distance measure may not be negative (cf. Appendix A).

18See (ibid). Note that Diaconis & Graham write ‘S’ for the squared and ‘D’ for
the normal footrule measure.

19Mathematically, Spearman’s footrule is a Manhattan distance (also sometimes
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called a ‘city block’ metric) and Minkowski distances are a generalization of this
concept.

20A more general approach with explicit position weights can be found in Kumar
and Vassilvitskii (2010). They allow arbitrary positive weights, though, which is
neither needed nor desirable in the present context. Note that (14) takes the position
of both elements into consideration because it uses each 2-combination twice. For
instance, for a ąx c the pair pa, cq is compared to y’s ordering first with a’s position
and later pc, aq is compared to y’s ordering with c’s position. This is not harmful,
because in both cases the position factor is based on x’s ordering.

21This example is due to Tad White (p. c.) to whom many of the points made in
this subsection must be accredited.

22Or, noncomparable, as Chang (1997a) puts it in order to distinguish this form
of incommensurability from more vicious ones.

23As an anonymous reviewer remarks, this representation can also be used to
express the uncertainty of any observer who knows x’s preferences and is unsure
about y’s preferences. Although the generalization is straightforward, we wish
to restrict our attention to simple cases of one agent being unsure about another
agent’s preferences, though. It seems that in a setting with a third-person observer
uncertainty about x’s preferences might occur just as easily as about y’s preferences,
and the more combinations between two agent’s possible preferences there are, the
less useful becomes a corresponding observer-dependent measure. This claim needs
to be backed up by some statistical considerations and we leave that matter for
another occasion.

24It is worth noting that the second case is analogous to the well-known paradoxes
that may arise when Maximin is used instead of Expected Utility as a general
decision principle. See for example Radner and Marschak (1964), Harsanyi (1975,
p. 595) and Hansson (2013, p. 41).

25See for example Sartre (1946), Raz (1986), Levi (1986), Chang (1997a).

26In decision theory this kind of incomparability has been investigated by Seiden-
feld (1995) and Ok (2002).

27See Bogart (1973) and Cook (1986).

28See Schumm (1987), Luce (1956), Tversky (1969), Fishburn (1991) among
others, Bouyssou et al. (2009) for an overview. Hansson (2001) also bases his
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formalization of values on weaker relations.

29Hansson’s notion of ‘weak eligibility’ neatly captures this phenomenon. Item a
is weakly eligible, since there is no other alternative a1 such that a1 ą a.

30There are, of course, various ways to break such cycles. For example, a
purporter of ‘satisficing’ (Simon, 1956) could claim that any option is just good
enough.

31Krantz et al. (1990) is the classic source. See Abdellaoui and Gonzales (2009)
for a brief overview.

32Someone who believes in the existence of strong moral dilemmas will likely
deny that (22) could form the basis of a general theory of value, for the principle
already implies that all attributes are fully comparable and an overall outcome
assessment can be made, unless F is allowed to be a partial function. However,
even if (22) is rejected a relativized version of the principle will still need to hold in
decision situations without moral dilemma.
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