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Theory of Concepts∗

Erich Rast

Key Notions and Problems

Concept theories draw on a rich tradition, ranging from Plato and Aristotle
over Leibniz to Frege. Two key aspects of a theory of concepts need to be dis-
tinguished. (i) The cognitive aspect regards the role of concepts in cognition
and how these enable an epistemic agent to classify and categorize reality. A
concept system is sometimes considered the cornerstone and starting point
of a ‘logic of thinking.’ (ii) From a metaphysical point of view, concept
theory must provide an explanation of the ontological status of universals,
how these combine, whether there are different modes of predication, and
what it means in general for an object to fall under a concept. Both aspects
will be addressed in what follows. The survey starts with a brief overview of
selected problems and positions.

The Demarcation Problem. There is no general agreement in the literature
on what a concept is. Sometimes ‘concept’ is more or less used as a synonym
for ‘property’, but many authors use it in a more specific sense, for example
as standing [242]for unsaturated entities whose extensions are sets and
classes (Frege), for Fregean senses (Church), or for abstract objects (Zalta).
One goal shared by many authors, despite terminological differences, is to
carve out the differences between closely related notions such as concepts,
properties, abstract objects, Leibnizian concepts, or Fregean senses and make
these notions more precise.

Nominalism, Realism, Cognitivism. A particular object is said to fall
under a singular or individual concept and likewise a group of objects sharing
some common trait is said to fall under a general concept. Being sorts of uni-
versals, different stances towards general concepts may be taken: According
to strict nominalism there are only particulars; quantification over predicate
expressions is not allowed at all or very limitedly. In this view general
concepts do not exist in reality although they might play a role as thinking
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devices. In contrast to this, according to realism predicates denote universals
either directly or whenever the predicate has been nominalized. There are
universals in the sense that one may fully quantify over them although they
might not be considered to exist in the narrow sense. Cognitivism is a mixed
position. In this view, there are universals but only insofar as they are
represented (or representable) by mental states.

Intensionality, Hyperintensionality, Contradictory Concepts. Having
a heart and having a liver are often given as an example of two different
concepts with the same extension. Modal logics have been used to account for
this difference. Normal possible worlds semantics does not, however, provide
the means to distinguish two different mathematical concepts with the same
extension from each other. For example, two different ways of describing an
equiangular triangle will determine the same set of objects in all possible
worlds. To tackle this problem a stronger form of intensionality known as
hyperintensionality is needed. Moreover, a person might erroneously believe
that 37 is a prime number while not believing that 21 + 16 is prime, might
erroneously believe that

√
2 is a rational number, or might muse about

round squares. To represent irrational attitudes and impossible objects a
logic must in one way or another allow contradictory statements. Since in
classical logic any formula can be derived from a contradiction (ex falso quod
libet) a paraconsistent logic is needed; such a logic allows one to derive some,
but not arbitrary consequences from a contradiction.

Similarity. A concept may be more or less similar to other concepts. For
example, the concept of being a chair is similar to the concept of being a
stool and both of them are more similar to each other than any of them is
to the concept of being the back of a horse. From a cognitive perspective it
is desirable to have a concept theory that allows for a measure of similarity
between concepts and the objects falling under them.

Typicality. Typically chairs have four legs, but some have less. Typically
birds can fly, but penguins cannot fly. How can this typicality be accounted
for?

[243]

Preliminaries of Logical Concept Theory

In order to formulate a broadly-conceived logical theory of concepts it
is necessary to quantify over concepts or corresponding abstract objects.
Unless a very strict nominalism based on first-order logic is defended this
naturally involves the use of second-order logic. For this reason results from
mathematical logic need to be taken into account when developing a logical
theory of concepts, some of which are addressed in what follows.

Henkin Models and Standard Models. There are two kinds of models
for higher-order logic. In a standard model, first-order variables range
over a domain D, second-order variables over P(D) for predicates and
P(D1 × · · · ×Dn) for n-ary relations, third-order predicate variables over
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Stratification: Formula φ is homogeneously stratified iff there is a function
f(.) that maps terms and formulas of the language to natural numbers such
that for any atomic formula P (x1, . . . , xn) in φ, f(P ) = max[f(xi)] + 1 and
f(xi) = f(xj) for 1 ≤ i, j ≤ n.

∃F∀~x[F (~x)↔ φ(~x)] (Scheme A)

∃F∀~x[F (~x)↔ (G(~x) ∧ φ(~x))] (Scheme B)

Conditions: (I) ~x := x1, . . . , xn are free in φ, i.e. bound in the whole scheme;
(II) F is not free in φ, i.e. not bound in the whole scheme; (III) φ is
homogeneously stratified.

¬ Unrestricted Comprehension: Scheme A + I

­ Predicative Comprehension: Scheme A + I, II, III

® Separation Axiom: Scheme B + I, II

Box 1: Comprehension Schemes and Stratification

P(P(D)), and so on. In a Henkin model (general model), only a fixed
subset of the powerset is chosen respectively. So for instance the quantifier
in ∀F [F (a)] ranges over a fixed subset of P(D). Higher-order logic with
Henkin models is essentially a variant of many-sorted first-order predicate
logic (Henkin, 1950). It is complete, compact and the Löwenheim-Skolem
theorems hold in it, but does not allow one to define certain mathematical
structures categorically, i.e. in a way that is unique apart from differences
captured by the notion of an isomorphism between models. In contrast to
this, higher-order logic with standard models is not complete, not compact,
and the Löwenheim-Skolem theorems do not hold in it. Lack of a full-fledged
proof theory is compensated by the ability to categorically define important
concepts such as countable vs. uncountable domains, quantifiers like ‘most’,
and well-foundedness conditions. The distinction between higher-order logic
and second-order logic with standard models is less important, since the
former can be reduced to the latter without significant loss of expressivity
(Hintikka, 1955). For this reason many authors focus on second-order logic.

[244]Logical Paradoxes and Comprehension. Given some condition
expressible in a formal language, what concepts are there? One way to
answer this question is by specifying a comprehension scheme. Unrestricted
comprehension asserts that there is a concept corresponding to any condition
φ that can be formulated in the language (see Box 1, Principle ¬). It
allows one to introduce Russell’s paradox of predication, the analogue to
the well-known set-theoretic paradox. Take the predicate P (x) that is
not predicable of itself and is defined as ¬x(x). Choosing φ := ¬x(x)
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and existential instantiation allows one to derive ∀x[P (x) ↔ ¬x(x)] and
by universal instantiation the contradiction P (P ) ↔ ¬P (P ). Different
provisions to avoid such inconsistencies lead to higher-order logics with
varying expressive power that reflect different stances towards nominalism,
cognitivism, and realism.

Predicativity vs. Impredicativity. A definition is impredicative iff it
quantifies over a collection of objects to which the defined object belongs;
otherwise it is predicative. Some mathematicians like Poincaré, Weyl, and
Russell himself held the view that paradoxes arise because a logic with
unrestricted comprehension allows for impredicative definitions. As a solution,
the logic is made predicative. One way to achieve this is by assigning an
order to all variables and prescribe that in any atomic formula P (x1, . . . , xn)
in a condition φ formulated in the language the order of all x must be lower
than the order of P (see Box 1, Principle ­ and stratification). This makes
¬x(x) ungrammatical. Church’s influential Simple Type Theory (STT) is
another way to define a predicative higher-order logic. Every term has a
type with corresponding domain. Starting with finitely many base types,
infinitely many compound types can be built. If α and β are types, then
(αβ) is the type of a function that takes an object of type β and yields
an object of type α, where β and α may themselves be compound types.
Predicates and relations are represented by several functions. This is called
Currying or Schönfinkelization. For example, a unary predicate P is of
type (σι), indicating a function that takes a term of type ι and yielding a
truth-value of type σ, a second-order predicate is of type (σ(σι)), and so on.
(Another notation which was popularized by Montague uses e for objects, t
for truth-values, and the order is reversed.)

Impredicativity does not automatically lead to paradoxes. On the con-
trary, many useful mathematical concepts such as the induction principle
used for defining natural numbers are impredicative. For this reason some
conceptual realists opt for impredicative second-order logics that give rise to
larger mathematical universes. In these logics comprehension is restricted
less radically than in predicative ones (see e.g. Box 1, Principle ®) or full
comprehension is combined with a limited substitution principle in order to
gain more expressivity while avoiding the paradoxes. The downside is that
it is harder to ensure consistency in such systems than in purely predicative
logics.

Philosophical Relevance. First-order logic and predicative higher-order
logic with Henkin models reflect a strict nominalist stance as has been
defended by Lésniewski, for example. Predicative higher-order logic with
standard models may also be considered nominalist in spirit, because pred-
icative comprehension reduces the existence of general concepts to conditions
explicitly given in the language. [245]In contrast to this, impredicative
higher-order logics with standard models clearly reflect a realist stance. More
fine-grained distinctions can be found in Cocchiarella (1994, 2007).
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Concepts as Abstract Objects

Possibilism. While the conceptual realist wants to talk about concepts it
would be implausible to claim that concepts exist in the same sense as
ordinary objects. Therefore, many conceptual realists distinguish, pace
Quine, between quantification as a means of counting and quantification as a
means of asserting existence. A logic in which non-trivial properties can be
ascribed to nonexistent objects is possibilist or Meinongian, where the latter
term is often used for metaphysical theories that allow one to talk about
contradictory objects. In a classical setting, possibilism can be obtained by
introducing two sorts of quantifiers. Actualist quantifiers are mere means
of counting and run over the total domain, whereas possibilist quantifiers
additionally assert existence and run only over a subset of the total domain.
Alternatively, a unary existence predicate E(x) may be introduced to which
possibilist quantifiers are relativized, for instance ∀∗xA := ∀x[E(x) → A]
and ∃∗xA := ∃x[E(x) ∧A].

Nominalization. One positive answer to the problem of universals is
to assert that we cannot only quantify over concepts but are also able to
talk about concepts like being nice as objects. Sometimes λ-abstraction is
thought to fulfill this purpose. Semantically, a term of the form λx.P (x) is
interpreted as the function that with respect to an assignment g takes an
a within the domain of x and whose result is the same as P (x) evaluated
with respect to the modified assignment g′ that is the same as g except
that g′(x) = a. One might then consider λx.P (x) to stand for being nice
if P stands for the predicate nice. However, λ-terms can be used instead
of relations (as in STT) and the converse transformation is also possible
in a logic with both functions and relations, and so λ-abstraction might
not be considered a tool for nominalization understood in the narrow sense.
Abstract object theory (Zalta, 1983) and alternative ontologies such as trope
theories (Rapaport, 1978; Castañeda, 1989; Mormann, 1995) provide more
elaborate nominalization mechanisms. Differing considerably in details and
terminology, generally in these approaches nuclear and extranuclear properties
are distinguished from each other (Parsons, 1980), where the former are being
constitutive of an object and the latter are not, and two different modes of
predication are available: An object, which does not have to be concrete
or existent, encodes a property if the property takes part of a description
or listing of the object’s essential features whereas it exemplifies a property
if it has the property accidentally. For example, in bundle trope theories
an object encodes a property if its constituting bundle of properties (viz.,
property moments also sometimes called qualitons) contains the property
and exemplifies a property if it stands in a designated relation to the property.
A concept is, in this view, a nonexistent non-concrete bundle of primitive
properties or property moments. Analogously, in abstract object theory aF
stands [246]for the fact that the abstract (nonexistent) object a encodes
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Figure 1: Intensional versus extensional identity in a possibilist intensional
logic. ES=‘evening star’, MS=‘morning star’, V=‘Vulcan’, TP=‘the planet
between Mercury and Sun.’

property F . Care must be taken to restrict the range of properties that can
be encoded. For example, forming an abstract object existent red sphere
must either be disallowed or the existence-entailing predicate ‘existent’ must
be interpreted in a derived, non-literal way in this construction.

Concepts and Intensionality

Modal Concepts and Intensionality. Modal operators may be added to higher-
order logic in the same way as they are added to first-order logic, which in the
second-order setting allows one to precisely express philosophical positions
about the modal properties of concepts. For example, Anti-Essentialism may
be expressed by adding the following axiom:

∀F [∃x�F (x)→ ∀x�F (x)] (1)

which may be paraphrased as “if an object has an essential property, then
any object has this essential property.”

Hyperintensionality. Inspired by Frege’s informal distinction between
the sense and the denotation of an expression, there is a tradition of hyper-
intensional logics in which the following Axiom of Extensionality does not
hold:

∀F∀G(∀~x[F (~x)↔ G(~x)]→ ∀H[H(F )→ H(G)]) (2)

This axiom states that if exactly the same objects fall under two concepts,
then the concepts are identical in Leibniz’ sense of having the same properties.
Despite considerable differences in detail, hyperintensional logics generally
invalidate this axiom by interpreting expressions over a domain of fine-
grained intensions, which are in turn mapped to their extensions by an
extension function (Muskens, 2007). Consequently, two notions of identity are
available in such a logic: coarse-grained extensional identity and fine-grained
intensional identity interpreted over intensions (Fig. 1). By interpreting
functions and operators standing for notions like de dicto belief over intensions
it is possible to distinguish having a heart from having a liver and deal
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with ordinary cases of referential opacity like Frege’s Morning–Evening Star
example. Additionally, strong intensions allow one to represent attitudes
that are not closed under logical consequence, i.e. someone’s believing that
37 is prime while not believing that 21+16 is prime.

[247]Contradictory Concepts. Representing irrational attitudes or con-
tradictory concepts like being a round square requires substantial changes
to the underlying logic. In a modal logical setting sometimes impossible
worlds are introduced. At an impossible world ‘anything goes’; arbitrary
formulas, including contradictions, may be true at such a world by mere
syntactic assignment. Another approach based on seminal work by Asenjo,
da Costa, Anderson and Belnap is to use a 3-valued logic such as LP or
RM3. These logics are paraconsistent and allow a contradictory formula to
have a designated truth value that is interpreted as ‘both true and false.’
Paraconsistent logics have also been proposed as a way of dealing with
the paradoxes, allowing the logic to mirror the philosophical position that
there are real paradoxes and our talk about them is meaningful (Dialetheism).

The logical aspects of concept theory mentioned so far are well-known,
but are not commonly combined into one all-encompassing metaphysical
theory. Most authors focus on some of these aspects, such as how they can
be used to answer the problem of universals, or logical reconstructions of
historical positions such as Leibniz’ Concept Calculus or Platonic Forms.
References to further work are given in Section 6.

Geometrical Approaches

In this section some promising alternatives to the logical approach shall be
mentioned, which are not metaphysical in the narrow sense. These broadly-
conceived geometrical concept approaches fare particularly well with issues
related to the cognitive aspects of concepts such as vagueness, typicality, and
similarity and can either be combined with, or are thought to complement,
logical theories.

Typicality. In a qualitative approach a preorder relation (preference
relation) between all objects falling under a concept can be used to order
objects falling under a given concept according to their typicality. The center
represents a prototype and the nearer an object is to the center the more
typical it is (Fig. 3a). In a logical setting this kind of typicality can be
expressed in Preference Logics and related descendants of Lewis’ Conditional
Logic. Quantitative accounts induce a similar ordering by assigning a degree
of typicality as a real number between 0 and 1 to each object as dependent
on the concept it falls under, and despite some differences the two approaches
can for many practical purposes be translated into each other. There are
interconnections of these basic forms of typicality to non-monotonic logics for
default reasoning, belief revision, ε-entailment, and plausibility and possibility
measures.
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Conceptual Spaces. Gärdenfors (2004) proposes to model concepts not
just on a symbolic, but also on a geometrical level. A conceptual space is an n-
dimensional metric space with n quality dimensions, each of which represents
a basic quality like height, width, hue, saturation, or loudness. A distance
function allows for measuring the distance between any two points in such a
space. In the simplest case of familiar n-dimensional Euclidean space this
distance measure between two points x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , yn〉
is defined as

dE(x, y) =

√√√√ n∑
i=1

wi(xi − yi)2 (3)

[248]where wi represents the weight of the respective quality dimension.
More general topological definitions of spaces allow for an adequate treatment
of purely qualitative dimensions. Generally speaking, in a conceptual space
objects are represented as vectors x = 〈x1, . . . , xn〉 and concepts by regions
in the space. Similarity between two objects in a conceptual space is defined
as a function of their distance.

Gärdenfors has conjectured that natural concepts should be represented
by convex regions. A region C of a space S is convex iff for any two points
x, y ∈ C any point tx + (1 − t)y, where 0 ≤ t ≤ 1, on the line segment xy
between x and y is also in C (Fig. 2a). One advantage of this assumption
is that every convex region has a center, which may be interpreted as a
prototypical object falling under the concept. Taking these centers p1, . . . , pk
as starting points, concepts Ci can be defined around them by partitioning the
space such that for each point x ∈ Ci, d(pi, x) ≤ d(pj , x) if i 6= j. The result
is called a Voronoi diagram (Fig. 3b). The closer a point is to the center pi
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Figure 3: (a) Typicality expressed as a preference ordering. (b) A Voronoi
diagram with seven centers.

of its concept Ci in such a partitioning, the higher is the degree of typicality
of the object it represents. The convexity condition has also been taken as a
first step toward distinguishing between natural and non-natural concepts.
For example, with ‘standard’ quality dimensions Goodman’s artificial concept
grue, which is true of green objects before some point in time and of blue
ones afterwards, is represented by a non-convex region (Fig. 2b). However,
this solution depends on criteria for finding natural quality dimensions, as
a natural concept may be turned into a non-natural one by changing the
underlying dimensions and vice versa.

Formal Concept Analysis. In formal concept analysis a set M of attributes
is associated with a set of objects G by a binary relation I(x, y) read as “object
x [249]has attribute G”, where the triple 〈M,G, I〉 is called a context. Such
a context may be thought of as a table with objects as rows and attributes
as columns and a mark at the row-column intersection if the object at that
row has the respective attribute. A formal concept is then a pair 〈A,B〉
of subsets A ⊆ G and B ⊆ M such that all objects in A share all the
attributes in B. The formal concepts of a context can be ordered by a
relation (A,B) ≤ (C,D) which is true iff A ⊆ C, false otherwise. Ordering
all concepts in a context yields a lattice structure in which the least specific
concept is at the bottom and the most specific one is at the top. Various
methods and algorithms based on this representation have been used for data
mining, machine learning, discovering new relationships between concepts,
concept visualization, explaining human concept acquisition, and models of
concept change.

Further Reading

Andrews (2002) contains an introduction to type theory; reprints of original
articles can be found in Benzmüller et al. (2008). Shapiro (1991) is a
comprehensive treatment of second-order logic. Burgess (2005) discusses
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predicative and impredicative foundations of arithmetics with a focus on
Frege. Metaphysical implications of different comprehension schemes are
discussed at length in Cocchiarella (1994, 2007). Priest (2005) is a modern
defense of possibilism and dialetheism; it may serve as a reference for further
literature. Zalta (1983) is the main work on abstract object theory and
contains reconstructions of Platonic Forms and Leibniz’ Concept Theory;
many refinements can be found in Zalta’s more recent works. Gärdenfors
(2004) is the seminal work on Conceptual Spaces. Ganter and Wille (1998)
and Ganter et al. (2005) lay out formal concept analysis in a rigid manner.
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