

Plausibility Revision in Higher-Order Logic with an Application in Two-Dimensional Semantics

Erich Rast

erich@snafu.de

IFL, Universidade Nova de Lisboa

LogKCA-10, November 2010

**Instituto de
Filosofia da Linguagem**
Universidade
Nova de Lisboa

Overview

- 1 Introduction
- 2 Preliminaries: STT, Two-Dimensional Semantics
- 3 Plausibility and Its Revision
- 4 Applications: Interpretative Assumptions, Some Form of Interpretation
- 5 Conclusion

Motivation: Why HOL?

- Why not? - Fun, curiosity, etc.
- Descriptive adequacy: Work with realistic representations of semantic content and (halfway) realistic examples.
- Investigate how (non-Gricean) notions of interpretation can be expressed in a two-dimensional setting.
- Integrate methods from formal epistemology with tools used commonly in general semantics (Montague Grammar, TLG, CCG).
- Long term goal: Express (aspects of) the interpretation of utterances on top of a traditional, two-dimensional semantic representation.

What Needs to be Done

- Implement two-dimensional semantics.
- Implement plausibility as a preorder to obtain a form of graded belief.
- Implement preorder revision.
- Apply in two-dimensional setting.
- Distinguish interpretative notions from linguistic notions.
- Implement a simple notion of interpretation:
 - Nonindexical and indexical expressions are interpreted.
 - The hearer evaluates the semantic content of a sentence on the basis of what he assumes that the speaker believes.

Simple Type Theory/HOL – Syntax

Types

Primitive types: e for entities, c for states, t for $\{1, 0\}$. If α, β are primitive types, then $(\alpha\beta)$ is a compound type. (Parentheses are left out – right-associativity is assumed.)

Syntax

If A is a term of type $\beta\alpha$ and B is a term of type β , then (AB) is a term of type α . If A is a term of type α and x is a variable of type β then $(\lambda x A)$ is a term of type $\beta\alpha$. The identity symbol $=$ is of type $\alpha\alpha t$ for any type α .

- Standard conventions: dot notation, infix notation for common connectives, $\forall x A$ for $\forall(\lambda x A)$, leave out parentheses, e.g. $A x y$ instead of $((A x) y)$, etc.

Simple Type Theory/HOL – Semantics

Generalized Model

A collection of non-empty sets D_α for primitive types α , $D_{(\alpha\beta)} \subseteq D_\beta^{D_\alpha}$ for compound types $(\alpha\beta)$, and a term evaluation function $\llbracket . \rrbracket^g$ under assignment g .

Truth in a Model

- $\llbracket A^\gamma \rrbracket^g = g(A)$ for variable A , where $g(A) \in D_\gamma$
- $\llbracket A^\gamma \rrbracket^g \in D_\gamma$ for constant A
- $\llbracket (A^{\beta\alpha} B^\beta) \rrbracket^g = \llbracket A \rrbracket^g (\llbracket B \rrbracket^g)$
- $(\lambda x^\beta A^\alpha)$ is the function $f \in D_\alpha^{D_\beta}$ such that $\llbracket A^\alpha \rrbracket^g[x/a] = f(a)$ for any $a \in D_\beta$
- $\llbracket ((=^{\alpha\alpha t} A^\alpha) B^\alpha) \rrbracket^g = 1$ if $\llbracket A^\alpha \rrbracket^g = \llbracket B^\alpha \rrbracket^g$ (0 otherwise)
- $\llbracket (\wedge A^t) B^t \rrbracket^g = 1$ if $\llbracket A \rrbracket^g = 1$ and $\llbracket B \rrbracket^g = 1$ (0 otherwise)
- $\llbracket \neg^{tt} A^t \rrbracket^g = 1$ if $\llbracket A \rrbracket^g = 0$ (0 otherwise)

Applicative Categorial Grammar

$$(\sigma/\tau) : A^{(\beta\alpha)} \tau : B^\beta \xrightarrow{f} \sigma : (A B) \quad \text{forward concatenation} \quad (1)$$
$$\tau : B^\beta (\tau \backslash \sigma) : A^{(\beta\alpha)} \xrightarrow{b} \sigma : (A B) \quad \text{backward concatenation} \quad (2)$$

Notes:

- Unlike in some other uses of CG, semantic representations are not evaluated.
- Shortcuts are possible, e.g. by different evaluation strategies (von Stechow/Zimmerman 2005), parameterizing truth in a model to contexts and indices, lifting modalities to the meta level, etc.
- For more realistic examples the full power of the Lambek calculus (hypothetical reasoning) plus other extensions like in TLG, CCG, Mortgat (1995) are needed.

Two-Dimensional Semantics

- Based on Kaplan (1989): In addition to indices for normal modal logical operators, add context parameters.
- Kaplan (1989) does not endorse structural symmetry of contexts and indices at all – but see e.g. others such as von Stechow/Zimmerman (2005).
- In the current setting: Make meanings of type $cc\alpha$, i.e. functions from an utterance ‘situation’ (state) to a function from a topic ‘situation’ (state) to an extension of type α .
- Ideally, situations would be used.
 - See Muskens (1995) for a partial, relation type theory.
 - It is *prima facie* not clear how to implement revision in a partial setting (future research needed).

Two-Dimensionalism: Example

Let the lexicon entries for 'I', 'me' be $np : \lambda us. \text{speaker } u$, for 'Mary' be $np : \lambda us. m$, and for 'loves' be $(s \setminus np) / np : \lambda i j us. \text{love } s(jus) (ius)$, where *speaker* is of type *ce* and *love* is of type *ceet*, where *i, j* are intensional types *cce*. Then:

$$\textcircled{1} \quad \text{'Mary loves me'} \quad (3)$$

$$= np : \lambda us. m (np \setminus s) / np : \lambda i j us. \text{love } s(jus) (ius) \quad (4)$$

$$np : \lambda us. \text{speaker } u$$

$$\Rightarrow np : \lambda us. m np \setminus s : \lambda j us. \text{love } s(jus) (\text{speaker } u) \quad (5)$$

$$\Rightarrow s : \lambda us. \text{love } s m (\text{speaker } u) \quad (6)$$

Conditions for Binary Relations

Of course, everything can be formulated in the object language and familiar conditions on binary relations of type cct can be expressed as properties of relations:

$$\text{Trans} := \lambda P. \forall stu[(Pst \wedge Ptu) \rightarrow Psu] \quad (7)$$

$$\text{Eucl} := \lambda P. \forall stu[(Pst \wedge Psu) \rightarrow Ptu] \quad (8)$$

$$\text{Ser} := \lambda P. \forall s \exists t [Pst] \quad (9)$$

$$\text{Refl} := \lambda P. \forall s [Pss] \quad (10)$$

KD45 Accessibility R^{ecct} :

$$\forall x[\text{Trans}(Rx) \wedge \text{Eucl}(Rx) \wedge \text{Ser}(Rx)] \quad (11)$$

Plausibility

Plausibility \geq of type $eccct$ is implemented as a preorder in the last two argument places:

$$\text{Trans}(\geq xs) \tag{12}$$

$$\text{Refl}(\geq xs) \tag{13}$$

with additional condition

$$\forall xup[\exists v(pv) \rightarrow \exists s(ps \wedge \neg \exists t[pt \wedge t >_{x,u} s])] \tag{14}$$

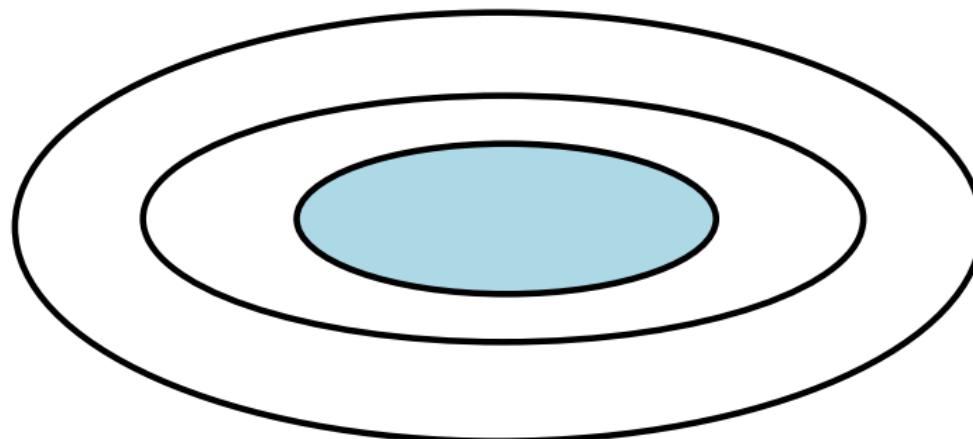
As usual,

- $s \sim_{x,u} t$ iff. $s \geq_{x,u} t$ and $t \geq_{x,u} s$,
- and $s >_{x,u} t$ iff. $s >_{x,u} t$ and not $t >_{x,u} s$.

Maximum

The maximum of a non-empty proposition p of type ct w. r. t. relation C of type $eccct$ is computed by:

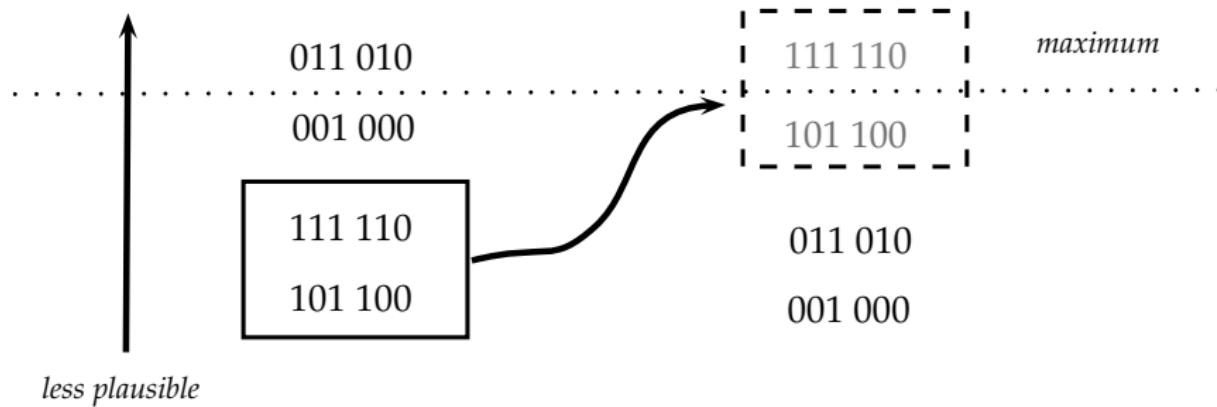
$$\text{Max} := \lambda xuCp.\iota q \forall s[(ps \wedge \neg \exists t[pt \wedge Cxuts \wedge \neg Cxust]) \equiv qs] \quad (15)$$



Plausibility Revision

Based on van der Bentham/Liu (2005), Liu (2008), Lang/van der Torre (2008): To revise by p , shift all p -states on top of the non- p -states.

more plausible



Plausibility Revision II

As an auxiliary notion, let 'when A^t then B_1^t otherwise B_2^t ' abbreviate $(A \rightarrow B_1) \wedge (\neg A \rightarrow B_2)$. The revision C' of an ordering relation C conditional on P for some agent x at u_0 is then characterized by the following term.

$$\begin{aligned} \text{REV} := \lambda x u_0 P C . \iota C' \forall y u s t [& \text{when } u_0 = u \wedge x = y \wedge P u s \wedge \neg P u t & (16) \\ & \wedge R x u s \wedge R x u t \text{ then } (C' x u s t \wedge \neg C' x u t s) \text{ otherwise } (C' y u s t \equiv C y u s t) \\ & \wedge (C' y u t s \equiv C y u t s)] \end{aligned}$$

Read: For given base situation u , if $P u s$ and $\neg P u t$ for two states s, t , then ensure that $s > t$ for the revised preorder $>$, otherwise leave the preorder unchanged.

Belief vs. Interpretative Belief

Linguistic Belief

Indexicals are not evaluated:

$$\text{Bel} := \lambda x u_0 s_0 \text{CP}. \forall s_1 [(\text{Max } x s_0 C(R x s_0)) s_1 \rightarrow P u_0 s_1] \quad (17)$$

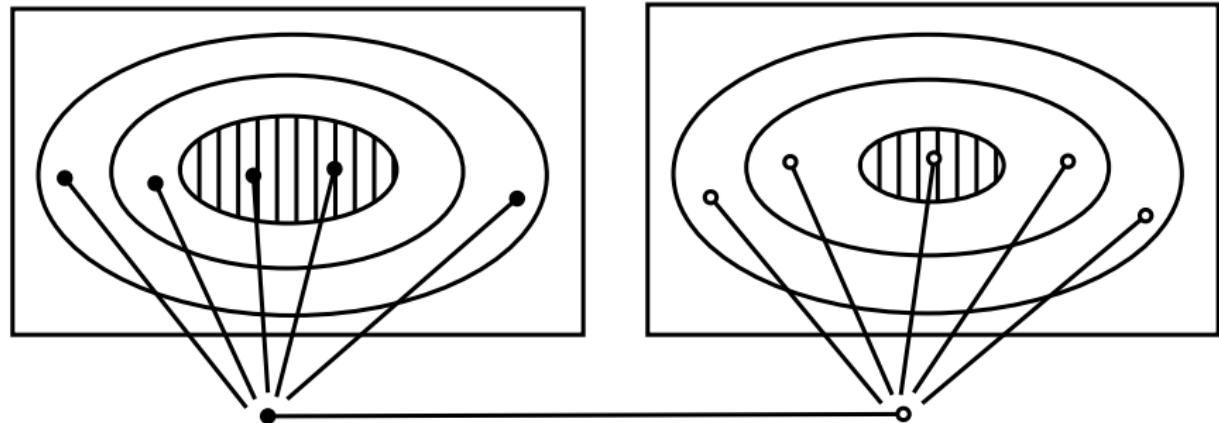
Interpretative Belief

Indexicals are evaluated:

$$\begin{aligned} \text{IBL} := \lambda x u_0 s_0 \text{CP}. \forall u_1 s_1 [& ([\text{Max } x u_0 C(R x u_0)] u_1 \wedge \\ & [\text{Max } x s_0 C(R x s_0)] s_1) \rightarrow P u_1 s_1] \end{aligned} \quad (18)$$

Interpretative notions are analogous to using diagonalization in a double-index modal logic, using an operator such as $M, c, i \models \Delta \phi$ iff. $M, i, i \models \phi$ when contexts and indices are structurally alike.

The Structure of an Interpretative Belief



Non-iterated Interpretative Assumptions

Weak interpretative assumptions:

$$\text{IAW} := \lambda x y u_0 s_0 \text{CP}. \forall u_1 s_1 s_2 [([\text{Max } x u_0 C(R x u_0)] u_1 \quad (19) \\ \wedge [\text{Max } x s_0 C(R x s_0)] s_1 \wedge [\text{Max } y s_1 C(R y s_1)] s_2) \rightarrow P u_1 s_2]$$

Reflect

- ... what the hearer believes about the utterance situation
- ... what the hearer believes that the speaker believes about the topic situation

Strong interpretative assumptions:

Additionally reflect what the hearer believes that the speaker believes about the utterance situation.

Using Revision

$$\begin{aligned}
 \text{RAW} := & \lambda x y u_0 s_0 P. \iota Q \forall u_1 u_2 s_1 s_2 [([\text{Max } x u_0 \geq (R x u_0)] u_1 \quad (20) \\
 & \wedge [\text{Max } x s_0 \geq (R x s_0)] s_1 \wedge [\text{Max } x s_1 (\text{REV } y s_1 P \geq) (R y s_1)] s_2) \\
 & \equiv Q u_1 s_2]
 \end{aligned}$$

- That meaning/2d-intension Q such that Q holds according to what x believes that y believes given that y accepts P (for given base states u_0, s_0).
- This notion is based on the revision by P of what y believes according to x 's beliefs, where the utterance situation is only taken into account according to x 's beliefs.
- Corresponding strong notion: Additionally it is taken into account what y believes about the utterance situation according to what x believes.

Some Form of Interpretation

$$\text{IPW} := \lambda xyusPQ. \text{IBL } xus(\text{REV } xu(\text{RAW } xyusP) \geq)Q \quad (21)$$

- Speaker utters a sentence whose meaning is P (disregarding ambiguity for simplicity).
- Assumption: Speaker is not deceptive, sincere, etc.
- $\text{RAW } xyusP$ represents what the speaker y believes given that P (according to x 's beliefs).
- $\text{IPW } a b u_0 s_0 P Q$: Q holds according to a 's interpretative belief generated by his beliefs revised by what he believes that the speaker b believes *given that* P (in given base states u_0, s_0).
- This form of interpretation captures the hearer's interpretation of the *literal meaning* of an utterance on the basis of a model of what the speaker believes. (\neq Gricean speaker meaning)

Example (informal)

John : I am here. (22)

Mary : No, you're not! You went to the Continental! (23)

- John and Mary want to meet in the lobby of the Holiday In.
- Suppose John is at the Continental and believes he's at the Holiday In.
- Suppose Mary believes that John is at the Continental and also believes that he believes that he is at the Holiday In.
- Then strong and weak interpretation differ: This explains Mary's reaction *and* can explain other reactions such as her going to the Continental despite believing that the original meeting was to take place at the Holiday In.

Conclusions

- (not surprising) Interpretation and belief as in 'to believe' are very distinct notions.
- There is a non-Gricean level of pragmatics that can be modeled directly on top of traditional representations of truth-conditional meanings computed from the lexicon.
- Once a hearer's model of the speaker's beliefs and its update is modeled, a number of fine-grained notions of belief, revision of iterated beliefs, and interpretation become available.

Open Issues

- How to implement soft update of the KD45 accessibility relation, i.e. when the agent takes into account things not previously considered, while maintaining the properties of the relation?
- Plausibility revision is categorical; is there a way to get more realistic graded revision?
- What's the relation between the above plausibility revision and AGM or KM belief revision/upgrade?